Spectral theory of multiplication operators on Hardy–Sobolev spaces
نویسندگان
چکیده
منابع مشابه
Composition Operators and Multiplication Operators on Orlicz Spaces
This article has no abstract.
متن کاملSpectral Approximation of Multiplication Operators
A linear operator on a Hilbert space may be approximated with nite matrices by choosing an orthonormal basis of the Hilbert space. For an operator that is not compact such approximations cannot converge in the norm topology on the space of operators. Multiplication operators on spaces of L2 functions are never compact; for them we consider how well the eigenvalues of the matrices approximate th...
متن کاملMultiplication Operators on Generalized Lorentz-zygmund Spaces
The invertible, compact and Fredholm multiplication operators on generalized Lorentz-Zygmund (GLZ) spaces Lp,q;α, 1 < p ≤ ∞, 1 ≤ q ≤ ∞, α in the Euclidean space R, are characterized in this paper.
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولMatrix multiplication operators on Banach function spaces
Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2018
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2018.05.017